
09/18/08 1

A System Architecture for Aerospace Applications
Employing Partial Reconfiguration and High-Level

Simulation

Daniel McMurtrey, Ross Hymel
Sandia National Laboratories

dmcmurt, rwhymel @sandia.gov

September 18, 2008

09/18/08 2

• Typical design scenarios employing FPGAs:
– Prototyping platform

• Validate designs targeting ASICs
– Generally for large volume applications

– Targeting a delivered product
• Avoids the time and cost of an ASIC
• Permits field upgrades of the design

– Through full reconfiguration (easy, common)
– Through partial reconfiguration (hard, rare)

• Can we exploit PR in delivered products?
– PR has existed throughout the Virtex series
– Historically avoided due to poor tool support and the

complexity of reconfiguration
– However, new tools and applications are facilitating its use

• Xilinx PR overlay (special request access only, currently not released)

Design Process Considerations

09/18/08 3

New System Design Paradigm

• We propose a fundamentally new system architecture
– Based on reconfigurable resources that are time-multiplexed by

different hardware modules using partial reconfiguration
– Hardware modules are designed using object-oriented software

tools with vast simulation capabilities
– Autonomous configuration controller to manage PR
– Generic hardware can then be qualified to very strict environmental

standards and used across many platforms and upgrades
– This type of architecture presents many challenges and potential

problems that need to be examined and addressed

09/18/08 4

First, a custom programmer writes the partial
bitstreams to a non-volatile memory.
Then, depending on the status of the current modules
as well as the definition of the configuration controller,
the hardware can be partially reconfigured. In this
case, DSP and transportation modules are loaded.

Once again, based on the status of current modules
and the programming of the configuration controller,
modules may be changed. Now safety and platform
interface modules are loaded.

The device powers up into a pre-defined initial
state. The configuration controller then loads
the first set of modules. In this case it is a
Built-in Self Test (BIST).

Configurable
Block

Configurable
Block

Configurable
Block

Configurable
Block

Configurable
Block

Configurable
Block

Configurable
Block

Configurable
Block

Configurable
Block

Configurable
Block

Configurable
Block

Configurable
Block

Configurable
Block

Configurable
Block

Configurable
Block

Configurable
Block

Configurable
Block

Configurable
Block

Configurable
Block

Configurable
Block

Configurable
Block

Configurable
Block

Configurable
Block

Example Implementation Targeting the Architecture

Config Controller

IOB

: . : . : . : .
Configurable

Block

DSP48 DSP48 DSP48 DSP48 DSP48

IOB

IOB

IOB

IOB

IOB

IOB

IOB

Block RAM Block RAM Block RAM

Memory

Current modules
Transport
Interface

DSP
Module

Built-In Self
Test

Safety
Module

Platform
Interface

Platform

Tester
For

BIST

Transport
Unit

Custom Programmer

09/18/08 5

Challenges of this Configurable Architecture

• Need a design framework (new design paradigm)
– Allow development of object-oriented functional models
– Provide cycle-accurate system-level simulation capabilities covering

partial reconfiguration
• Need implementation tools

– Must transform high-level simulation models to partial bitstreams
– Requires configuration controller to manage the reconfiguration process

• Need to reliably analyze and verify the system
– We must ensure the safety and reliability of the hardware architecture
– System simulations must be accurate
– We must have confidence in the design flow

09/18/08 6

New Design Paradigm

• Altered design flow
– Look at the lifetime of the system and break the behavior into basic modules
– Decide when modules need to exist
– Identify states (which modules exist at which times) and state transitions

• Commercial HDL simulation tools (ModelSim, Active-HDL, etc.) do not
support design and testing of this architecture

– Unable to simulate real-time partial reconfiguration
– Large VHDL simulations are very slow

Simulation

1000111101110001
0101101001010011
0010101010101010
1010101010101010
1010101010101010
1010110011010111

External
Stimulus Models

External
Controller

Models

R1
R2
R3

09/18/08 7

New Design Paradigm (2)

• We chose to utilize Orchestra (custom Sandia
design/simulation environment)
– Java-based (Object-oriented, GUIs, mature)
– Includes Orchestra-HDL (OHDL)

• Design process using the Orchestra tools:
– Implement design and testbed using abstract, high-level

Java models
– Refine the models to cycle-accurate OHDL models
– Automated tools:

• Translate OHDL to VHDL
• Generate a hardware-equivalent of the configuration controller

in VHDL
• Synthesize, map and place configurable regions
• Create and load reconfigurable bitstreams onto the target

platform

09/18/08 8

Design and Implementation Flow

Simulation Framework

OHDL to VHDL Translation

Configuration Controller
Generation

Partition Regions/Floorplan

PR Design Flow (Xilinx)

Device
Bitstreams

09/18/08 9

Advantages of this Architecture
• Generic reusable hardware

– Qualify hardware to strict environmental standards and then reuse
across platforms

• Intrinsic built-in test capabilities
– At any time, the reconfigurable regions can be configured to perform

built-in testing
– During normal operation, unused configurable regions can be used to

monitor and collect information
• Responsive architecture

– Can introduce new features or designs without changing hardware
• Design done in high-level simulation environment using object-oriented

software tools
– Provides enhanced visibility into the design and powerful simulation

capabilities
– Faster design time

• Inherent benefits:
– This architecture easily lends itself to redundancy

• Can improve safety and reliability
– Encryption can be built into the bitstream loader

• Design security

09/18/08 10

The Future of System Design?
Faster, Better, Cheaper?

One Time Process

Storage Design Manufacturing
and Testing

Develop
Functional
Modules

Synthesize Modules
Custom Programmer

Load Modules
 into Hardware

Install in
Different Platforms

09/18/08 11

Additional Slides

09/18/08 12

High-level Modeling/Simulation in Orchestra
• Design is done at higher levels of abstraction (Java and OHDL)
• Orchestra environment provides for cycle-accurate simulations

– Enhanced visibility and debugging tools
– Allows you to watch the condition of the configurable logic and see state transitions

• Fast, event-driven simulation engine
– Quick debug cycles

• Significantly reduces the development time and cost

09/18/08 13

OHDL to VHDL Translation

• Modules within the reconfigurable fabric are translated to VHDL from
OHDL
– File is parsed into a tree structure containing all the necessary

information
– Tree structure is run through a VHDL generation process to generate

the file
• OHDL and VHDL modules are behaviorally identical
• Hooks included to allow for translation to any other HDL or ML

File.java File.vhd
class

body definition

port port clock

if

operation operation

09/18/08 14

Configuration Controller Generation
• In software, the state table must be defined

– Determine which modules exist in which states
– Create a unique identifier for each state as well as a priority

• Also in software, the transition table must be defined
– What signals cause transitions from each state
– What state to enter due to each transition

• These tables define the configuration controller and allow simulation of partial
reconfiguration

• Hardware behavior during reconfiguration is user-controlled
• The tools will generate a hardware-equivalent of the configuration controller in VHDL

State
1

State
2

State
3

State
4

State
5

0 0 1 0 5
0 0 1 1 4
1 0 0 1 3
0 1 1 0 2
1 1 0 0 1
D C B A State

Hardware Module

X=1 Y=01

X=0 && Z=0

X=1 &&
Y=00

Y=11
|| X=1

Z=1

Z=0

Y=10

09/18/08 15

Region Partitioning/Floorplanning

• Knowing the state table, the tools optimally
allocate sets of hardware modules to share
distinct regions

– Requirements:
• Modules that share a region must not exist at the

same time in the state table
• Modules that share an output port must exist in the

same region
• Once the regions have been partitioned, they

must be physically constrained onto the chip
– Define the size, shape, and placement of the

region
• Must be large enough to accommodate the biggest

module
• Must be shaped and placed to allow the design to

meet timing
– Must obey internal FPGA placement restrictions

• Frame Boundaries
• Embedded I/O
• RAMB16/DSP48 Column Boundaries

– Must also locate and constrain bus macros

09/18/08 16

Partial Bitstream Generation

• Vendor/FPGA specific step
• Special PR Service Pack

– Early access flow not available to the general public at
this time

• Vendor design flow accessed through generated
script files

• The tools generate:
– Partial bitstreams for each reconfigurable module
– Total bitstreams for each individual state
– Blanking bitstreams for each reconfigurable region

• Timing is checked for each individual state
• Bitstreams are parsed and downloaded to a bank of

non-volatile flash memories

